

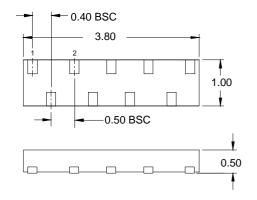
8- Line Ultra Low Capacitance TVS Diode Array

Features:

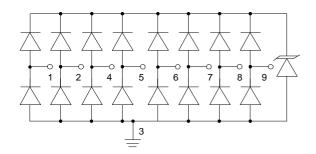
- Low operating voltage: 5V
- Low clamping voltage
- Protects eight data lines
- Leadless flow-through package
- Complies with following standards:
 - IEC 61000-4-2 (ESD) immunity test
 Air discharge: ±30kV
 - Contact discharge: ±25kV
 - IEC61000-4-4 (EFT) 40A (5/50ns)
 - IEC61000-4-5 (Lightning) 4.5A (8/20µs)
- RoHS Compliant

Applications:

- V-By-One Ports
- eSATA Interfaces
- HDMI 1.4 and HDMI 2.0
- USB 3.0 and USB 3.1
- LVDS Interfaces
- Muti MIPI / MDDI Ports


Mechanical Characteristics

- Package: DFN3810P9
- Lead Finish: Lead Free
- UL Flammability Classification Rating 94V-0
- Quantity Per Reel:3000pcs
- Reel Size:7 inch
- Device Marking: ULC93328

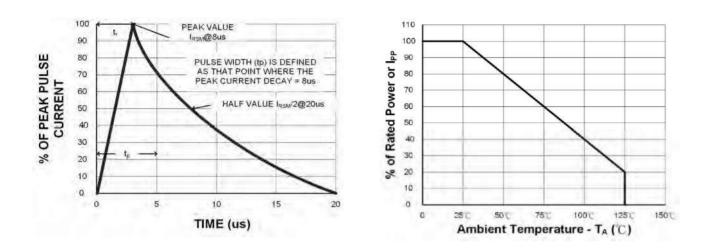

Absolute Maximum Ratings(Tamb=25°C unless otherwise specified)

Parameter	Symbol	Value	Unit	
Peak Pulse Power (8/20µs)	Ррр	54	W	
ESD per IEC 61000-4-2 (Air)	\/	± 30	Kv	
ESD per IEC 61000-4-2 (Contact)	Vesd	± 25	ΓV	
Operating Temperature Range	TJ	-55 to +150	°C	
Storage Temperature Range	Тѕтј	-55 to +150	°C	

DFN3810P9

Pin Configuration

Electrical Characteristics(TA=25°C unless otherwise specified)


Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Reverse Working Voltage	V _{RWM}				3.3	V
Breakdown Voltage	V _{BR}	l⊤ = 1mA	4			V
Reverse Leakage Current	I _R	Vrwm = 3.3V			0.1	μA
Clamping Voltage	Vc	IPP = 1A (8 x 20µs pulse)			8	V
Clamping Voltage	Vc	IPP = 3A (8 x 20µs pulse)			9.2	V
Clamping Voltage	Vc	IPP = 4.5A (8 x 20µs pulse)			12	V
Transmission Line Pulse	TLP	I оит = 1A		6		V
Transmission Line Pulse	TLP	I out = 8A		11.8		V
Transmission Line Pulse	TLP	I _{OUT} = 16A		18		V
Junction Capacitance	CJ	V _R = 0V, f = 1MHz (I/O to GND)		0.45		pF

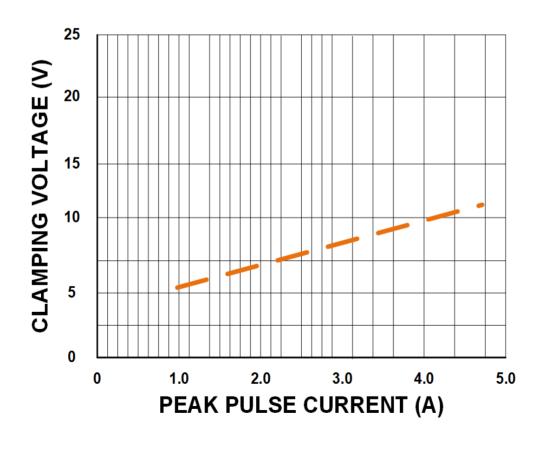

Typical Performance Characteristics (T_A=25°C unless otherwise Specified)

Figure 1. 8 x 20µ s Waveform

Figure 2. Power Derating Curve

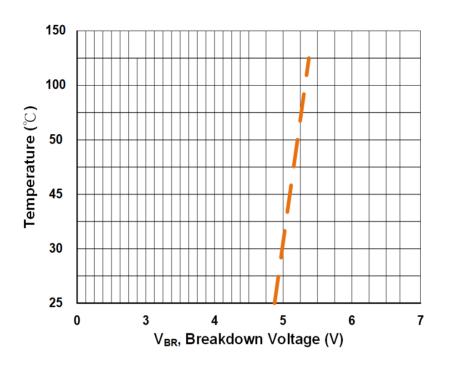
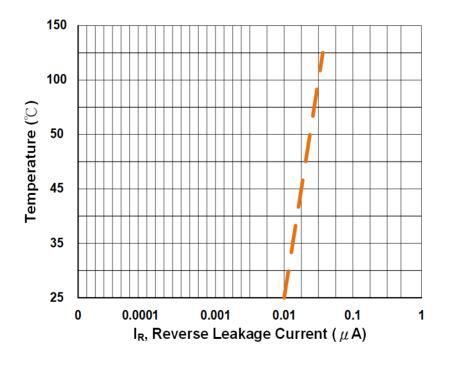
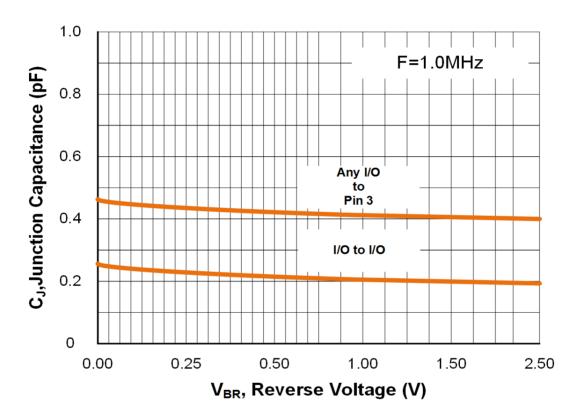
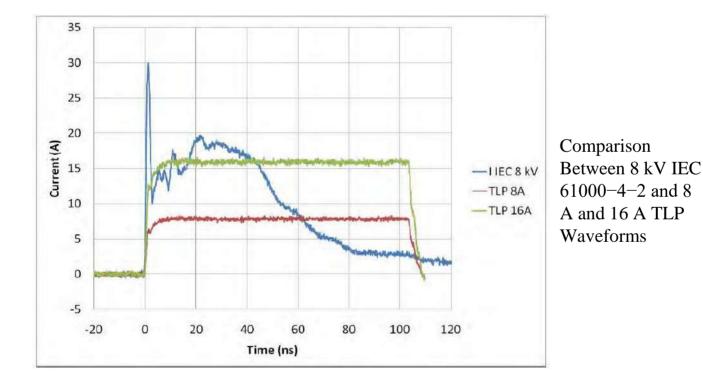




Figure 4. Typic Breakdown Voltage vs. Temperature

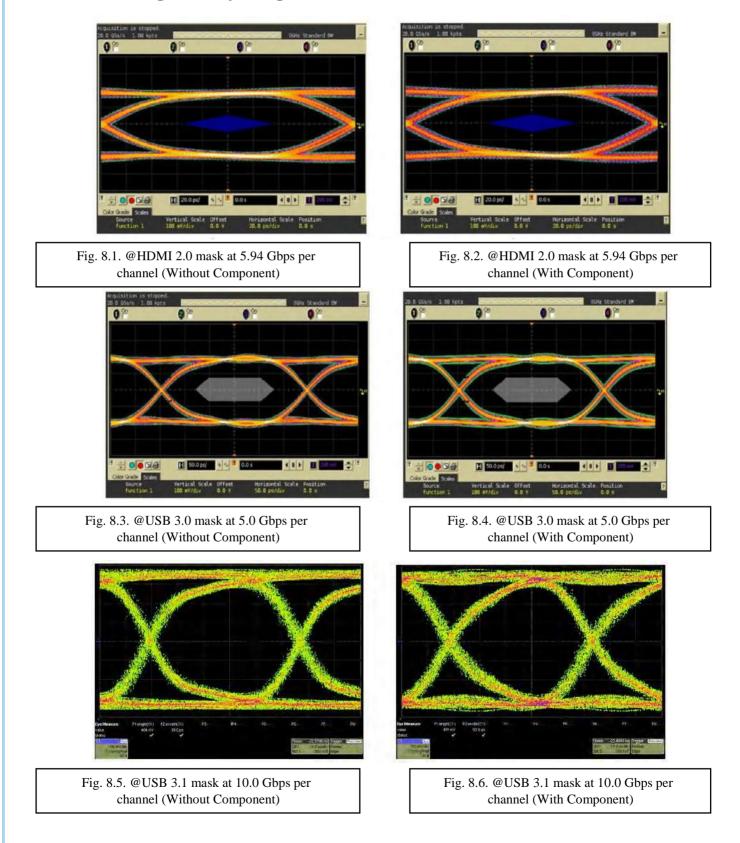
Figure 5. Typic Reverse Current vs. Temperature


Figure 6. Typic Capacitance vs. Reverse Voltage

TYPIC CHARACTERISTICS

Figure 7. Transmission Line Pulse (TLP)

Transmission Line Pulse (TLP) is a measurement technique used in the Electrostatic Discharge (ESD) arena to characterize performance attributes of devices under ESD stresses. TLP is able to obtain current versus voltage (I–V) curves in which each data point is obtained with a 100 ns long pulse, with currents up to 40 A. TLP was first used in the ESD field to study human body model (HBM) in integrated circuits, but it is an equally valid tool in the field of system level ESD. The applicability of TLP to system level ESD is illustrated in Figure 1, which compares an 8 kV IEC 61000–4–2 current waveform with TLP current pulses of 8 and 16 A. The current levels and time duration for the pulses are similar and the initial rise time for the TLP pulse is comparable to the rise time of the IEC 61000–4–2's initial current spike. This application note will give a basic introduction to TLP measurements and explain the datasheet parameters extracted from TLP for SDI Technology's protection products.



Comparison of a CurrentWaveform of IEC 61000–4–2with TLP Pulses at 8 and 16 A. The IEC 61000–4–2 ESD waveforms is true to the Standard and is shown here as captured on an oscilloscope. The points A, B, and C show the points on the aveforms specified in IEC 61000–4–2. Transmission Line Pulse (TLP) Version.

TYPIC CHARACTERISTICS

Figure 8. Eye diagram on HDMI 2.0, USB 3.0 and USB 3.1

KWULC3344P8

TYPIC CHARACTERISTICS

Figure 9. Layout Guidelines

Steps must be taken for proper placement and signal trace routing of the ESD protection device in order to ensure the maximum ESD survivability and signal integrity for the application. Such steps are listed below.

1. Place the ESD protection device as close as possible to the I/O connector to reduce the ESD path to ground and improve the protection performance.

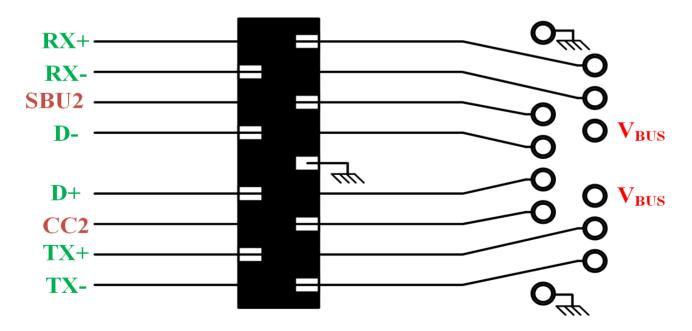
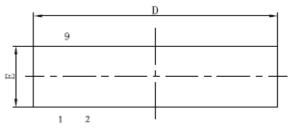
1.1. In USB 3.0/3.1 applications, the ESD protection device should be placed between the AC coupling capacitors and the I/O connector on the TX differential lanes as shown in below drawing In this configuration, no DC current can flow through the ESD protection device preventing any potential latch-up condition. For more information on latchup considerations, see below description on below drawing.

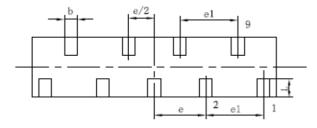
2. Make sure to use differential design methodology and impedance matching of all high speed signal traces.

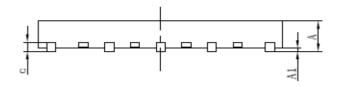
2.1. Use curved traces when possible to avoid unwanted reflections.

2.2. Keep the trace lengths equal between the positive and negative lines of the differential data lanes to avoid common mode noise generation and impedance mismatch.

2.3. Place grounds between high speed pairs and keep asmuch distance between pairs as possible to reduce crosstalk.


Fig. 9.1. USB 3.1 Type-C Layout Diagram


DFN3810P9 PACKAGE OUTLINE & DIMENSIONS

TOP VIEW

BOTTOM VIEW

SIDE VIEW

SYMBOL	MILLIMETER			
	MIN	NOM	MAX	
Α	0.45	0.50	0.55	
Al		0.02	0.05	
b	0.15	0.20	0.25	
o	0.10	0.15	0.20	
D	3, 70	3.80	3.90	
0	0.80BSC			
el	0.90BSC			
Е	0, 90	1.00	1.10	
L	0.20	0.30	0.40	